www.miloumaths.tk

امتحان تجريبي دورة ماي 2004

ثانوية: أبي العباس السبتي – مراكش الرياضيات

الشعبة : العلوم التجريبية الشانية ثانوي

(يسمح باستعمال الآلة الحاسبة غير المبرمجة)

التمرين الأول

في الفضاء المنسوب إلى معلم متعامد ممنظم مباشر، نعتبر المستوى (P) والفلكة (S) المعرفين على التوالي بالمعادلتين الديكار تيبتين:

(P) :
$$x-y-z-1=0$$

(S)
$$: x^2 + y^2 + z^2 - x - y - z = 0$$

- (S) حدد مركز وشعاع الفلكة
- (S) بين أن المستوى (P) مماس للفلكة (2).
- (S) حدد نقطة تماس المستوى (P) والفلكة (3).

التمرين الثاني

$$I = \int_{\ln 3}^{\ln 4} \frac{2e^x - 3}{e^x + 2e^{-x} - 3} dx \quad : \text{ (1)}$$

$$\int_{1}^{0} \frac{x^{2}}{\left(x^{2}+1\right)^{2}} dx = \frac{\pi-2}{8} \quad \text{(2)}$$

$$J = \int_0^1 \frac{\sqrt{x}}{2(x+1)^2} dx$$
: حیث $t = \sqrt{x}$ بوضع -b

التمرين الثالث

يحتوي صندوق على كرة واحدة خضراء و 3 كرات حمراء لا يمكن التمييز بينها باللمس.

نسحب عشوائيا كرة من الصندوق:

- إذا كانت الكرة المسحوبة خضراء فإننا نعيدها إلى الصندوق ثم نسحب تآنيا كرتين من الصندوق.
- ا أما إذا كانت الكرة المسحوبة حمراء فإننا لا نعيدها إلى الصندوق ثم نسحب بالتتابع وبدون إحلال كرتين من الصندوق.

احسب احتمال كل من الأحداث التالية:

- الحصول على كرتين لهما نفس اللون في السحبة الثانية A
- المصول على كرتين مختلفتي اللون في السحبة الثانية B
- · الحصول على كرة خضراء في السحبة الأولى علما أننا سحبنا كرتين لهما نفس اللون في السحبة الثانية ".

التمرين الرابع

$$P(z) = i\sqrt{3}z^2 - z$$
: © نضع لكل ي من

دد في المستوى العقدي مجموعة النقطP(z) بحيث يكون P(z) تخيليا صرفا.

$$(E)$$
: $(z \in \mathbb{C}, P(z) = -1)$: نعتبر المعادلة (2

(E)حل المعادلة -a

. (E) اكتب على الشكل المثلثي جذري المعادلة -b

امتحان تجريبيي دورة ماي 2004

ثانوية: أبي العباس السبتي – مراكش الرياضيات : الرياضيات

الشعبة : العلوم التجريبية الثانية ثانوي

مسألة

الحزء الأول

$$\begin{cases} f(x) = x \ln(1+x); x \ge 0 \\ f(x) = (x+2)e^{\frac{1}{x}}; x < 0 \end{cases}$$
 الدالة العددية لمتغير حقيقي حيث:

 $\left(O, \overrightarrow{i}, \overrightarrow{j}
ight)$ المنحنى الممثل للدالة f في المستوى المنسوب إلى معلم متعامد ممنظم الكن

f عدد a مجموعة تعريف الدالة a

D عند محدات -b

 $x_0 = 0$ بين أن الدالة f متصلة في النقطة -a (2

 $x_0=0$ بين أن الدالة f قابلة للاشتقاق في النقطة -b

$$\forall x \in]0,+\infty[$$
 , $f'(x) = \frac{x}{x+1} + \ln(1+x)$: 4. -a (3)

$$\forall x \in]-\infty, 0[, f'(x) = (x^2 + -x - 2)\frac{e^{\frac{1}{x}}}{x^2}$$

f اعط جدول تغیرات الداله -b

$$\lim_{x \to -\infty} (f(x) - (x+3)) = 0 : 4$$
 بين أن -a (4

(C)ادرس الفروع اللانهائي للمنحنى -b

(-2) عند النقطة ذات الأفصول (T) للمنحنى عند النقطة ذات الأفصول -a (5

$$f(x) = x$$
: المعادلة $[0, +\infty]$ حل في

(
$$\ln 2 \approx 0.7$$
 و $\frac{1}{\sqrt{e}} \approx 0.6$ و $\frac{1}{e} \approx 0.4$ و $\|\vec{i}\| = \|\vec{j}\| = 2cm$: (C) انشئ المنحنى (6)

الجزء الثاني

$$\begin{cases} u_0=1 \\ \forall n\in\mathbb{N}, u_{n+1}=u_n\ln\left(1+u_n
ight) \end{cases}$$
 : نعتبر المتتالية العددية $\left(u_n\right)_{n\geq 0}$ المعرفة بما يلي :

 $\forall n \in \mathbb{N}$, $0 \le u_n \le -1 + e$: بين أن (1

بين أن المتتالية (u_n) تناقصية. (2

استنتج أن المتتالية $\left(u_{n}\right)$ متقاربة واحسب نهايتها.

rm